Respuesta :

QUESTION:- PROVE THE IDENTITY

INDENTITY->

[tex] \frac{1}{1 - \cos(A) } + \frac{1}{1 +\cos(A) } = 2 \cosec^{2} (A) [/tex]

ANSWER:-

[tex] \frac{1}{1 - \cos(A) } + \frac{1}{1 +\cos(A) } \\ \\ \\ \frac{(1 + \cos(A)) + (1 - \cos(A))}{(1 - \cos(A))(1 - \cos(A))} \\ \\\\ \frac{2}{ {1}^{2} - \cos^{2} (A) } = \frac{2}{ \sin^{2} (A) } \\\\\\ 2 \cosec^{2} (A) = 2 \cosec^{2} (A) \\ \\ \\ LHS=RHS \\ \\ HENCE \: \: \: PROVED[/tex]

djsk56

Step-by-step explanation:

1.cross multiply

2.solve the numerator and

multiply the denominator

3.the denominator comes in the formula

4.convert it and your answer is there

Ver imagen djsk56
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE