Respuesta :

Answer:

63.966

Step-by-step explanation:

Area of a kite is

[tex] \frac{pq}{2} [/tex]

where p and q are the diagonals.

The horinzontial diagonal is 8.

We need to find the vertical diagonal length.

The top triangle diagonal measure is

[tex] {4}^{2} + {x}^{2} = {7}^{2} [/tex]

[tex]16 + {x}^{2} = 49[/tex]

[tex] {x}^{2} = 33[/tex]

[tex]x = \sqrt{33} [/tex]

The bottom triangle diagonal measure is

[tex] {4}^{2} + {x}^{2} = {11}^{2} [/tex]

[tex]1 6 + {x}^{2} = 121[/tex]

[tex] {x}^{2} = 105[/tex]

[tex]x = \sqrt{105} [/tex]

Add the two diagonals.

[tex] \sqrt{105} + \sqrt{33} [/tex]

Substitute this in for the formula

[tex] \frac{8 \times ( \sqrt{105} + \sqrt{33} }{2} [/tex]

Which simplified gu

Ives us

[tex]63.966[/tex]

Round if neededd.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE