Area for a kite
I don’t know how to find the area pls help

Answer:
63.966
Step-by-step explanation:
Area of a kite is
[tex] \frac{pq}{2} [/tex]
where p and q are the diagonals.
The horinzontial diagonal is 8.
We need to find the vertical diagonal length.
The top triangle diagonal measure is
[tex] {4}^{2} + {x}^{2} = {7}^{2} [/tex]
[tex]16 + {x}^{2} = 49[/tex]
[tex] {x}^{2} = 33[/tex]
[tex]x = \sqrt{33} [/tex]
The bottom triangle diagonal measure is
[tex] {4}^{2} + {x}^{2} = {11}^{2} [/tex]
[tex]1 6 + {x}^{2} = 121[/tex]
[tex] {x}^{2} = 105[/tex]
[tex]x = \sqrt{105} [/tex]
Add the two diagonals.
[tex] \sqrt{105} + \sqrt{33} [/tex]
Substitute this in for the formula
[tex] \frac{8 \times ( \sqrt{105} + \sqrt{33} }{2} [/tex]
Which simplified gu
Ives us
[tex]63.966[/tex]
Round if neededd.