Step-by-step explanation:
Given:
[tex]\vec{\textbf{F}}(x, y, z) = ye^z\hat{\textbf{i}} + xe^z\hat{\textbf{j}} + xye^z\hat{\textbf{k}}[/tex]
A vector field is conservative if
[tex]\vec{\nabla}\textbf{×}\vec{\text{F}} = 0[/tex]
Looking at the components,
[tex]\left(\vec{\nabla}\textbf{×}\vec{\text{F}}\right)_x = \left(\dfrac{\partial F_z}{\partial y} - \dfrac{\partial F_y}{\partial z}\right)_x[/tex]
[tex]= xe^z - ye^z \neq 0[/tex]
Since the x- component is not equal to zero, then the field is not conservative so there is no scalar potential [tex]\phi[/tex].