Given $f(x) = \frac{\sqrt{2x-6}}{x-3}$, what is the smallest possible integer value for $x$ such that $f(x)$ has a real number value? please show steps. Thank you!

Respuesta :

Given:

The function is:

[tex]f(x)=\dfrac{\sqrt{2x-6}}{x-3}[/tex]

To find:

The smallest possible integer value for $x$ such that $f(x)$ has a real number value.

Solution:

We have,

[tex]f(x)=\dfrac{\sqrt{2x-6}}{x-3}[/tex]

This function is defined if the radicand is greater than or equal to 0, i.e., [tex]2x-6\geq 0[/tex] and the denominator is non-zero, i.e., [tex]x-3\neq 0[/tex].

[tex]2x-6\geq 0[/tex]

[tex]2x\geq 6[/tex]

[tex]\dfrac{2x}{2}\geq \dfrac{6}{2}[/tex]

[tex]x\geq 3[/tex]             ...(i)

And,

[tex]x-3\neq 0[/tex]

Adding 3 on both sides, we get

[tex]x-3+3\neq 0+3[/tex]

[tex]x\neq 3[/tex]             ...(ii)

Using (i) and (ii), it is clear that the function is defined for all real values which are greater than 3 but not 3.

Therefore, the smallest possible integer value for x is 4.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE