Answer:
Hence the number of plans that cost between $42.72 and $ 85.72 is
95.44 %.
Step-by-step explanation:
Now the given are
μ = $64.22.
σ = $10.75.
Here,
[tex]P\left ( 42.72 < x< 85.72 \right )=P\left ( \frac{42..72-64.22}{10.75}< \frac{x-\mu }{\sigma } < \frac{85.72-64.22}{10.75}\right )\\P\left ( 42.72 < x< 85.72 \right )= P\left ( -2.00< Z <2.00 \right )\\P\left ( 42.72 < x< 85.72 \right )= P\left (Z<2.00\right )-P\left ( Z<-2.00 \right )\\P\left ( 42.72 < x< 85.72 \right )= P\left (0.9772\right )-P\left (0.0228\right )\\Probability = 0.9544[/tex]
Probability = 95.44%.