Evaluate the integral. (Use C for the constant of integration. Enter your answer using function notation - use ln(x) instead of ln x.)

Respuesta :

Answer:

[tex]\int\limits {\frac{3x^3 + 4x^2 + 9x + 4}{(x^2 + 1)(x^2 +3)}} \, dx = \frac{3}{2}\ln(x^2 + 1) + 4\sqrt{3}\tan^{-1}(\frac{x}{\sqrt 3} )+ c[/tex]

Step-by-step explanation:

Given

[tex]\int\limits {\frac{3x^3 + 4x^2 + 9x + 4}{(x^2 + 1)(x^2 +3)}} \, dx[/tex]

Required

Integrate

Using partial fraction, we have:

[tex]\frac{3x^3 + 4x^2 + 9x + 4}{(x^2 + 1)(x^2 +3)}} = \frac{Ax+B}{x^2 + 1} + \frac{Cx + D}{x^2 + 3}[/tex]

Take LCM

[tex]\frac{3x^3 + 4x^2 + 9x + 4}{(x^2 + 1)(x^2 +3)}} = \frac{(Ax+B)(x^2 + 3)+ (Cx + D)(x^2 + 1)}{(x^2 + 1)(x^2 + 3)}[/tex]

Cancel out the denominators

[tex]3x^3 + 4x^2 + 9x + 4} = (Ax+B)(x^2 + 3)+ (Cx + D)(x^2 + 1)[/tex]

Open brackets

[tex]3x^3 + 4x^2 + 9x + 4} = Ax^3+Bx^2 + 3Ax +3B+ Cx^3 + Dx^2 + Cx + D[/tex]

Collect like terms

[tex]3x^3 + 4x^2 + 9x + 4 = Ax^3+ Cx^3+Bx^2+ Dx^2 + 3Ax+ Cx +3B + D[/tex]

Compare like terms on opposite sides

[tex]Ax^3 + Cx^3 = 3x^3[/tex]              [tex]A + C = 3[/tex]

[tex]Bx^2 + Dx^2 = 4x^2[/tex]              [tex]B + D = 4[/tex]

[tex]3Ax + Cx = 9x[/tex]                  [tex]3A + C = 9[/tex]

[tex]3B + D = 4[/tex]

Subtract [tex]B + D = 4[/tex] from [tex]3B + D = 4[/tex]

[tex]3B - B + D - D = 4 - 4[/tex]

[tex]2B + 0 = 0[/tex]

[tex]2B = 0[/tex]

[tex]B = 0[/tex]

[tex]B + D = 4[/tex]

[tex]D =4 - B[/tex]

[tex]D =4 - 0[/tex]

[tex]D =4[/tex]

Subtract [tex]A + C = 3[/tex] from [tex]3A + C = 9[/tex]

[tex]3A - A + C - C = 9 - 3[/tex]

[tex]2A = 6[/tex]

[tex]A = 3[/tex]

[tex]A + C = 3[/tex]

[tex]C = 3 - A[/tex]

[tex]C = 3 - 3[/tex]

[tex]C = 0[/tex]

So, we have:

[tex]A = 3[/tex]        [tex]B = 0[/tex]       [tex]C = 0[/tex]       [tex]D =4[/tex]

[tex]\frac{3x^3 + 4x^2 + 9x + 4}{(x^2 + 1)(x^2 +3)}} = \frac{Ax+B}{x^2 + 1} + \frac{Cx + D}{x^2 + 3}[/tex]

[tex]\frac{3x^3 + 4x^2 + 9x + 4}{(x^2 + 1)(x^2 +3)}} = \frac{3x+0}{x^2 + 1} + \frac{0*x + 4}{x^2 + 3}[/tex]

[tex]\frac{3x^3 + 4x^2 + 9x + 4}{(x^2 + 1)(x^2 +3)}} = \frac{3x}{x^2 + 1} + \frac{4}{x^2 + 3}[/tex]

The integral becomes:

[tex]\int\limits {[\frac{3x}{x^2 + 1} + \frac{4}{x^2 + 3}]} \, dx[/tex]

Split:

[tex]\int\limits {\frac{3x}{x^2 + 1} \, dx + \int\limits {\frac{4}{x^2 + 3}} \, dx[/tex]

Split

[tex]\frac{3}{2} \int\limits {\frac{2x}{x^2 + 1} \, dx + 4\int\limits {\frac{1}{x^2 + 3}} \ dx[/tex]

Integrate

[tex]\frac{3}{2}\ln(x^2 + 1) + 4\sqrt{3}\tan^{-1}\frac{x}{\sqrt 3} + c[/tex]

Hence:

[tex]\int\limits {\frac{3x^3 + 4x^2 + 9x + 4}{(x^2 + 1)(x^2 +3)}} \, dx = \frac{3}{2}\ln(x^2 + 1) + 4\sqrt{3}\tan^{-1}(\frac{x}{\sqrt 3} )+ c[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE