Respuesta :

Answer:

Picture attached :)

Step-by-step explanation:

Draw straight lines from the corner of the shape to the point at (0,3) - now you have the outline of where the new shape should go. Now divide the number of squares on each side by 3. This is easy as the shape uses multiples of 3. Then find within the lines where the shape fits. This is how I did it, hope it helps,

Ver imagen alisha2p2

We present the resulting figure in the image attached.

The original figure is formed by the following vertices: [tex]A(x,y) = (6, 9)[/tex], [tex]B(x,y) = (7.5, 9)[/tex], [tex]C(x,y) = (7.5, 6)[/tex], [tex]D(x,y) = (9,6)[/tex], [tex]E(x,y) = (9, 4.5)[/tex] y [tex]F(x,y) = (6, 4.5)[/tex]. The image is found by the following transformation:

[tex]P'(x,y) = O(x,y)+k\cdot [P(x,y)-O(x,y)][/tex] (1)

Where:

  • [tex]O(x,y)[/tex] - Centre of dilation.
  • [tex]P(x,y)[/tex] - Original point.
  • [tex]P'(x,y)[/tex] - Resulting point.
  • [tex]k[/tex] - Dilation factor.

If we know that [tex]O(x,y) = (0,3)[/tex] and [tex]k = \frac{1}{3}[/tex], then the resulting points of the figure are, respectively:

[tex]A'(x,y) = (0,3) + \frac{1}{3}\cdot [(6,9)-(0,3)][/tex]

[tex]A'(x,y) = (0,3) + \frac{1}{3}\cdot (6,6)[/tex]

[tex]A'(x,y) = (0,3) +(2,2)[/tex]

[tex]A'(x,y) = (2,5)[/tex]

[tex]B'(x,y) = (0,3) + \frac{1}{3}\cdot [(7.5, 9)-(0,3)][/tex]

[tex]B'(x,y) = (0,3) +\frac{1}{3}\cdot (7.5, 6)[/tex]

[tex]B'(x,y) = (0,3) + (2.5, 2)[/tex]

[tex]B'(x,y) = (2.5, 5)[/tex]

[tex]C'(x,y) = (0,3) + \frac{1}{3}\cdot [(7.5,6)-(0,3)][/tex]

[tex]C'(x,y) = (0,3) +\frac{1}{3}\cdot (7.5, 3)[/tex]

[tex]C'(x,y) = (0,3) +(2.5, 1)[/tex]

[tex]C'(x,y) = (2.5, 4)[/tex]

[tex]D'(x,y) = (0,3) + \frac{1}{3}\cdot [(9,6)-(0,3)][/tex]

[tex]D'(x,y) = (0,3)+\frac{1}{3}\cdot (9, 3)[/tex]

[tex]D'(x,y) = (0,3) +(3, 1)[/tex]

[tex]D'(x,y) = (3, 4)[/tex]

[tex]E'(x,y) = (0,3)+\frac{1}{3}\cdot [(9, 4.5)-(0,3)][/tex]

[tex]E'(x,y) = (0,3) + \frac{1}{3} \cdot (9,1.5)[/tex]

[tex]E'(x,y) = (0,3) + (3, 0.5)[/tex]

[tex]E'(x,y) = (3, 3.5)[/tex]

[tex]F'(x,y) = (0,3) + \frac{1}{3}\cdot [(6, 4.5)-(0,3)][/tex]

[tex]F'(x,y) = (0,3) + \frac{1}{3} \cdot (6, 1.5)[/tex]

[tex]F'(x,y) = (0,3) +(2, 0.5)[/tex]

[tex]F'(x,y) = (2, 3.5)[/tex]

Finally, we present the resulting figure in the image attached.

We kindly invite to check this question on dilations: https://brainly.com/question/13176891

Ver imagen xero099
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE