Answer:
[tex]Pr = \frac{1}{45}[/tex]
Step-by-step explanation:
Given
[tex]Black =5[/tex]
[tex]Pink = 2[/tex]
[tex]Blue = 3[/tex]
Required
[tex]P(Pink\ and\ Pink)[/tex]
This is calculated as:
[tex]Pr = P(Pink) * P(Pink)[/tex]
Because it is a selection without replacement, the probability is:
[tex]Pr = \frac{n(Pink)}{Total} * \frac{n(Pink) - 1}{Total - 1}[/tex]
[tex]Pr = \frac{2}{10} * \frac{2 - 1}{10 - 1}[/tex]
[tex]Pr = \frac{2}{10} * \frac{1}{9}[/tex]
[tex]Pr = \frac{1}{5} * \frac{1}{9}[/tex]
[tex]Pr = \frac{1}{45}[/tex]