Respuesta :

Given:

The endpoints of a line segment QS are Q(-6,2) and S(5,6).

Point R divides the line segment QS in 1:2.

To find:

The coordinates of point R.

Solution:

Section formula: If a point divides a line segment in m:n, then the coordinates of that point are:

[tex]Point=\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)[/tex]

It is given that the endpoints of a line segment QS are Q(-6,2), S(5,6) and point R divides the line segment QS in 1:2. So, the coordinate of point R are:

[tex]R=\left(\dfrac{1(5)+2(-6)}{1+2},\dfrac{1(6)+2(2)}{1+2}\right)[/tex]

[tex]R=\left(\dfrac{5-12}{3},\dfrac{6+4}{3}\right)[/tex]

[tex]R=\left(\dfrac{-7}{3},\dfrac{10}{3}\right)[/tex]

Therefore, the coordinates of point R are [tex]\left(\dfrac{-7}{3},\dfrac{10}{3}\right)[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE