Respuesta :

Space

Answer:

[tex]\displaystyle \int\limits^0_\infty {cos(x)} \, dx = sin(\infty)[/tex]

General Formulas and Concepts:

Pre-Calculus

  • Unit Circle
  • Trig Graphs

Calculus

  • Limits
  • Limit Rule [Variable Direct Substitution]:                                                     [tex]\displaystyle \lim_{x \to c} x = c[/tex]
  • Integrals
  • Integration Rule [Fundamental Theorem of Calculus 1]:                             [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
  • Trig Integration
  • Improper Integrals

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^0_\infty {cos(x)} \, dx[/tex]

Step 2: Integrate

  1. [Improper Integral] Rewrite:                                                                         [tex]\displaystyle \lim_{a \to \infty} \int\limits^0_a {cos(x)} \, dx[/tex]
  2. [Integral] Trig Integration:                                                                             [tex]\displaystyle \lim_{a \to \infty} sin(x) \bigg| \limits^0_a[/tex]
  3. [Integral] Evaluate [Integration Rule - FTC 1]:                                               [tex]\displaystyle \lim_{a \to \infty} sin(0) - sin(a)[/tex]
  4. Evaluate trig:                                                                                                 [tex]\displaystyle \lim_{a \to \infty} -sin(a)[/tex]
  5. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           [tex]\displaystyle -sin(\infty)[/tex]

Since we are dealing with infinity of functions, we can do a numerous amount of things:

  • Since -sin(x) is a shift from the parent graph sin(x), we can say that -sin(∞) = sin(∞) since sin(x) is an oscillating graph. The values of -sin(x) already have values in sin(x).
  • Since sin(x) is an oscillating graph, we can also say that the integral actually equates to undefined, since it will never reach 1 certain value.

∴  [tex]\displaystyle \int\limits^0_\infty {cos(x)} \, dx = sin(\infty) \ or \ \text{unde}\text{fined}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Improper Integrals

Book: College Calculus 10e

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE