The speed of a vehicle is reduced with a constant acceleration from 72km/h to 18
km/h over 250m directly down an incline of lin25. The mass of the vehicle is 1.9
Mg and it has a constant resistance to motion of 350N.
Calculate the magnitude of the braking Force
Answer:
Check​

Respuesta :

Answer:

The correct answer will be "1477.84 N".

Explanation:

Given that,

Mass,

m = 1.6 mg

or,

   = 1600 kg

Initial velocity,

u = 72 km/h

  = [tex]72\times \frac{5}{18} \ m/s[/tex]

  = [tex]20 \ m/s[/tex]

Final velocity,

v = 18 km/h

  = [tex]18\times \frac{5}{18}[/tex]

  = [tex]5 \ m/s[/tex]

Covered distance,

s = 250 m

By using the below relation, we get

⇒  [tex]v^2=u^2+2as[/tex]

On putting the values, we get

⇒  [tex](5)^2=(20)^2+2\times a\times 250[/tex]

⇒      [tex]a=-0.75 \ m/s^2[/tex] (shows the deceleration)

Slope will be given as 1 in 25, then

⇒  [tex]Sin \theta=\frac{1}{25}[/tex]

           [tex]\theta=2.3^{\circ}[/tex]

hence,

As we know,

⇒  [tex]\Sigma F=ma[/tex]

or,

⇒  [tex]Braking \ force+350-mgSin\theta=ma[/tex]

⇒  [tex]Braking \ force=ma+mgSin\theta-350[/tex]

On substituting all the values, we get

⇒                           [tex]=1600(0.75+1600\times 9.81 Sin(2.3^{\circ})-350[/tex]

⇒                           [tex]=1477.84 \ N[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE