Four passengers with combined mass 250 kg compress the springs of a car with worn out shock absorbers by 4.00cm when they enter it. Model the care and passengers as a single body on a single ideal spring. If the loaded has a period of vibration of 1.08 s, what is the period of vibration of the empty car?

Respuesta :

Answer:

The time period of the empty car will be "1.00 s".

Explanation:

The given values in the question will be:

Mass,

m = 250 kg

Loaded car's time period will be:

T = 1.08 s

Shock absorbers compression,

x = 4 cm

or,

  = 0.04 m

Now,

Weight of passengers will be:

⇒  [tex]F=mg[/tex]

         [tex]=250\times 9.8[/tex]

         [tex]=2450 \ N[/tex]

The spring constant of shock absorbers will be:

⇒  [tex]k=\frac{F}{x}[/tex]

        [tex]=\frac{2450}{0.04}[/tex]

        [tex]=61.250 \ N/m[/tex]

As we know,

Time period, [tex]T = 2 \pi\sqrt{\frac{M}{k} }[/tex]

On substituting the values, we get

                   [tex]1.08=2\pi \sqrt{\frac{M}{61250} }[/tex]

                  [tex]\frac{M}{61250}=0.02955[/tex]

                      [tex]M=0.02955\times 61250[/tex]

                           [tex]=1809.6 \ kg[/tex] (Total mass of car as well as its passengers)

Now,

The mass of the empty car will be:

⇒  [tex]m'=M-m[/tex]

          [tex]=1809.6-250[/tex]

          [tex]=1559.6 \ kg[/tex]

hence,

The time period of empty car will be:

⇒  [tex]T'=2\pi\sqrt{\frac{m'}{k} }[/tex]

         [tex]=2\pi\sqrt{\frac{1559.6}{61250} }[/tex]

         [tex]=2\pi \sqrt{0.0254}[/tex]

         [tex]=1.003 \ s[/tex]

or,

         [tex]=1.00 \ s[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE