The sum of the angles in a hexagon is 720°.
a. Write an equation that can be used to determine the value of x.
b. Solve your equation algebraically
c. Determine the measure of angle c.

The sum of the angles in a hexagon is 720a Write an equation that can be used to determine the value of xb Solve your equation algebraicallyc Determine the meas class=

Respuesta :

Given:

The sum of the angles in a hexagon is 720°.

[tex]m\angle A=90^\circ,m\angle B=126.87^\circ,m\angle C=(3x)^\circ,m\angle D=90^\circ, m\angle E=143.13^\circ, m\angle F=143.13^\circ.[/tex]

To find:

(a) Equation to solve the value of x.

(b) The value of x.

(c) The measure of angle C.

Solution:

(a)

We have,

[tex]m\angle A=90^\circ,m\angle B=126.87^\circ,m\angle C=(3x)^\circ,m\angle D=90^\circ, m\angle E=143.13^\circ, m\angle F=143.13^\circ.[/tex]

The sum of the angles in a hexagon is 720°.

[tex]m\angle A+m\angle B+m\angle C+m\angle D+m\angle E+m\angle F =270^\circ[/tex]

[tex]90^\circ+126.87^\circ+(3x)^\circ+90^\circ+143.13^\circ+143.13^\circ =270^\circ[/tex]

[tex]90+126.87+(3x)+90+143.13+143.13 =720[/tex]

Therefore, the required equation is [tex]90+126.87+(3x)+90+143.13+143.13 =720[/tex].

(b)

On solving the above equation, we get

[tex]593.13+3x =720[/tex]

[tex]3x =720-593.13[/tex]

[tex]3x =126.87[/tex]

Divide both sides by 3.

[tex]x =\dfrac{126.87}{3}[/tex]

[tex]x =42.29[/tex]

Therefore, the value of x is 42.29.

(c)

We need to find the measure of angle C.

[tex]m\angle C=(3x)^\circ[/tex]

[tex]m\angle C=(3\times 42.29)^\circ[/tex]

[tex]m\angle C=126.87^\circ[/tex]

Therefore, the measure of angle C is 126.87 degrees.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE