Answer:
"12.122 m/s²" is the appropriate solution.
Explanation:
The given values in the question are:
Length,
l = 49.0 cm
or,
= [tex]49.0\times 10^{-2} \ m[/tex]
Time taken,
[tex]T = \frac{125}{99.0}[/tex]
[tex]=1.2626 \ s[/tex]
Now,
As we know,
⇒ [tex]T = 2 \pi\sqrt{\frac{l}{g} }[/tex]
or,
⇒ [tex]T^2=4 \pi^2[\frac{l}{g} ][/tex]
[tex]g = 4\pi^2[\frac{l}{T^2} ][/tex]
By substituting the above given values, we get
[tex]=\frac{4\times (3.14)^2\times (49.0\times 10^{-2})}{(1.2626)^2}[/tex]
[tex]=\frac{39.4384\times 49.0\times 10^{-2}}{1.59415876}[/tex]
[tex]=\frac{19.324816}{1.59415876}[/tex]
[tex]=12.122 \ m/s^2[/tex]