After landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 49.0 cm. The explorer finds that the pendulum completes 99.0 full swing cycles in a time of 125 s. What is the value of the acceleration of gravity on this planet?

Respuesta :

Answer:

"12.122 m/s²" is the appropriate solution.

Explanation:

The given values in the question are:

Length,

l = 49.0 cm

or,

 = [tex]49.0\times 10^{-2} \ m[/tex]

Time taken,

[tex]T = \frac{125}{99.0}[/tex]

   [tex]=1.2626 \ s[/tex]

Now,

As we know,

⇒  [tex]T = 2 \pi\sqrt{\frac{l}{g} }[/tex]

or,

⇒  [tex]T^2=4 \pi^2[\frac{l}{g} ][/tex]

     [tex]g = 4\pi^2[\frac{l}{T^2} ][/tex]

By substituting the above given values, we get

        [tex]=\frac{4\times (3.14)^2\times (49.0\times 10^{-2})}{(1.2626)^2}[/tex]

        [tex]=\frac{39.4384\times 49.0\times 10^{-2}}{1.59415876}[/tex]

        [tex]=\frac{19.324816}{1.59415876}[/tex]

        [tex]=12.122 \ m/s^2[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE