Respuesta :

Answer:

tan β = [tex]\frac{7}{24}[/tex]

Step-by-step explanation:

Using the identities

sin x = [tex]\frac{1}{cscx}[/tex] , cos x = [tex]\frac{1}{secx}[/tex] , tan x = [tex]\frac{sinx}{cosx}[/tex] , then

sinβ = [tex]\frac{1}{\frac{25}{7} }[/tex] = [tex]\frac{7}{25}[/tex]

cos β = [tex]\frac{1}{\frac{25}{24} }[/tex] = [tex]\frac{24}{25}[/tex]

Then

tan β = [tex]\frac{\frac{7}{25} }{\frac{24}{25} }[/tex] = [tex]\frac{7}{25}[/tex] × [tex]\frac{25}{24}[/tex] = [tex]\frac{7}{24}[/tex]

Answer:

tanβ = 7/24

Step-by-step explanation:

Given:

cscβ = 25/7

secβ = 25/24

tanβ = ?

Recall:

cscβ = 1/sinβ

secβ = 1/cosβ

tanβ = sinβ/cosβ

Rewrite and simplify:

tanβ = sinβ/cosβ

tanβ = (1/cscβ)/(1/secβ)

tanβ = (1/(25/7))/(1/(25/24))

tanβ = (7/25)/(24/25)

tanβ = (7/25)(25/24)

tanβ = (7*25)/(25*24)

tanβ = 175/600

tanβ = 35/120

tanβ = 7/24

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE