Help please !!!!!!!!!!!
CSC B = 25/7 and the sec B =25/24 find tan B??

Answer:
tan β = [tex]\frac{7}{24}[/tex]
Step-by-step explanation:
Using the identities
sin x = [tex]\frac{1}{cscx}[/tex] , cos x = [tex]\frac{1}{secx}[/tex] , tan x = [tex]\frac{sinx}{cosx}[/tex] , then
sinβ = [tex]\frac{1}{\frac{25}{7} }[/tex] = [tex]\frac{7}{25}[/tex]
cos β = [tex]\frac{1}{\frac{25}{24} }[/tex] = [tex]\frac{24}{25}[/tex]
Then
tan β = [tex]\frac{\frac{7}{25} }{\frac{24}{25} }[/tex] = [tex]\frac{7}{25}[/tex] × [tex]\frac{25}{24}[/tex] = [tex]\frac{7}{24}[/tex]
Answer:
tanβ = 7/24
Step-by-step explanation:
Given:
cscβ = 25/7
secβ = 25/24
tanβ = ?
Recall:
cscβ = 1/sinβ
secβ = 1/cosβ
tanβ = sinβ/cosβ
Rewrite and simplify:
tanβ = sinβ/cosβ
tanβ = (1/cscβ)/(1/secβ)
tanβ = (1/(25/7))/(1/(25/24))
tanβ = (7/25)/(24/25)
tanβ = (7/25)(25/24)
tanβ = (7*25)/(25*24)
tanβ = 175/600
tanβ = 35/120
tanβ = 7/24