Answer:
[tex]\boxed{\red{\sf h^{-1}(x)=\dfrac{4}{3}x+22}}[/tex]
Step-by-step explanation:
Given :-
And we need to find the Inverse of the function . So for that firstly replace h(x) with y , we have ,
[tex]:\implies[/tex] h(x) = 3/2 ( x -11)
[tex]:\implies[/tex] y = 3/2 ( x - 11)
[tex]:\implies[/tex] y = 3/2x - 33/2
[tex]:\implies[/tex] x = 3/2y - 33/2
[tex]:\implies[/tex] x + 33/2 = y × 3/2
[tex]:\implies[/tex] y = (2x + 33)×2/3
[tex]:\implies[/tex] y = 4x/3 + 22
[tex]:\implies[/tex] h-¹(x) = 4x/3 + 22
Hence the inverse of the function is 4x/3 + 22