Respuesta :

Equivalent expressions are expressions that have equal values

The equivalent expressions of [tex]y^{-8}y^3x^0x^{-2}[/tex] are [tex]x^{-2}y^{-5}[/tex] and [tex]\frac{1}{x^2y^5}[/tex]

The expression is given as:

[tex]y^{-8}y^3x^0x^{-2}[/tex]

Express x^0 as 1

[tex]y^{-8}y^3x^0x^{-2} = y^{-8}y^3 \times 1 \times x^{-2}[/tex]

Apply law of indices

[tex]y^{-8}y^3x^0x^{-2} = y^{-8 + 3}\times x^{-2}[/tex]

[tex]y^{-8}y^3x^0x^{-2} = y^{-5}\times x^{-2}[/tex]

Remove the product sign (x)

[tex]y^{-8}y^3x^0x^{-2} = y^{-5}x^{-2}[/tex]

Rewrite as:

[tex]y^{-8}y^3x^0x^{-2} = x^{-2}y^{-5}[/tex]

Rewrite as positive exponents

[tex]y^{-8}y^3x^0x^{-2} = \frac{1}{x^2y^5}[/tex]

Hence, the equivalent expressions of [tex]y^{-8}y^3x^0x^{-2}[/tex] are [tex]x^{-2}y^{-5}[/tex] and [tex]\frac{1}{x^2y^5}[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/2972832

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE