Respuesta :

Given:

[tex]sinh(f(x))=1+x^2[/tex]

To find:

The value of f'(x).

Solution:

Formulae used:

[tex]\dfrac{d}{dx}sinh(x)=cosh(x)[/tex]

[tex]\dfrac{d}{dx}x^n=nx^{n-1}[/tex]

[tex]\dfrac{d}{dx}C=0[/tex]

Chain rule:

[tex]\dfrac{d}{dx}[f(g(x))]=f'(g(x))g'(x)[/tex]

Where C is an arbitrary constant.

We have,

[tex]sinh(f(x))=1+x^2[/tex]

Differentiate with respect to x.

[tex]cosh(f(x))f'(x)=0+2x[/tex]

[tex]f'(x)=\dfrac{2x}{cosh(f(x))}[/tex]

Therefore, the required values is [tex]f'(x)=\dfrac{2x}{cosh(f(x))}[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE