Respuesta :
Answer:
[tex]\displaystyle d \approx 7.2[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Coordinates (x, y)
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point (-2, 5)
Point (-8, 1)
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(-8--2)^2+(1-5)^2}[/tex]
- [√Radical] (Parenthesis) Subtract: [tex]\displaystyle d = \sqrt{(-6)^2+(-4)^2}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle d = \sqrt{36+16}[/tex]
- [√Radical] Add: [tex]\displaystyle d = \sqrt{52}[/tex]
- [√Radical] Evaluate: [tex]\displaystyle d = 7.2111[/tex]
- Round: [tex]\displaystyle d \approx 7.2[/tex]
Answer:
7.2 u
Step-by-step explanation:
Given :-
- Two points (-2,5) and (-8,1) is given to us.
And we need to find out the distance between the two points . So , here we can use the distance formula to find out the distance. As,
[tex]:\implies[/tex] D = √{(x2-x1)² + (y2-y1)²}
[tex]:\implies[/tex] D =√[ (2-8)² +(5-1)²]
[tex]:\implies[/tex] D =√[ 6² +4²]
[tex]:\implies[/tex] D =√[ 36 +16]
[tex]:\implies[/tex] D = 7.2 u