Respuesta :

Space

Answer:

[tex]\displaystyle d \approx 7.2[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Point (-2, 5)

Point (-8, 1)

Step 2: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:                                                           [tex]\displaystyle d = \sqrt{(-8--2)^2+(1-5)^2}[/tex]
  2. [√Radical] (Parenthesis) Subtract:                                                                   [tex]\displaystyle d = \sqrt{(-6)^2+(-4)^2}[/tex]
  3. [√Radical] Evaluate exponents:                                                                       [tex]\displaystyle d = \sqrt{36+16}[/tex]
  4. [√Radical] Add:                                                                                                 [tex]\displaystyle d = \sqrt{52}[/tex]
  5. [√Radical] Evaluate:                                                                                         [tex]\displaystyle d = 7.2111[/tex]
  6. Round:                                                                                                               [tex]\displaystyle d \approx 7.2[/tex]

Answer:

7.2 u

Step-by-step explanation:

Given :-

  • Two points (-2,5) and (-8,1) is given to us.

And we need to find out the distance between the two points . So , here we can use the distance formula to find out the distance. As,

[tex]:\implies[/tex] D = √{(x2-x1)² + (y2-y1)²}

[tex]:\implies[/tex] D =√[ (2-8)² +(5-1)²]

[tex]:\implies[/tex] D =√[ 6² +4²]

[tex]:\implies[/tex] D =√[ 36 +16]

[tex]:\implies[/tex] D = 7.2 u

Hence the distance between the two points is 7.2 units .

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE