Respuesta :

Answer:

[tex]\boxed {\boxed {\sf d\approx 4.2}}[/tex]

Step-by-step explanation:

The formula for distance is:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2[/tex]

Where (x₁, y) and (x₂, y₂) are the points.

We are given (-6, 6) and (-3, 3). If we match the value and its corresponding variable, we see that:

  • x₁= -6
  • y₁ = 6
  • x₂ = -3
  • y₂ = 3

Substitute the values into the formula.

[tex]d= \sqrt{ (-3 - -6)^2+(3-6)^2[/tex]

Solve inside the parentheses.

  • -3 --6 = -3+6 = 3
  • 3-6 = -3

[tex]d= \sqrt{(3)^2+ (-3)^2[/tex]

Solve the exponents.

  • (3)²= 3*3= 9
  • (-3)²= -3*-3 =9

[tex]d= \sqrt{9+9[/tex]

Add.

[tex]d= \sqrt18[/tex]

[tex]d= 4.24264069[/tex]

Round to the nearest tenth. The 4 in the hundredth place tells us to leave the 2 in the tenth place.

[tex]d \approx 4.2[/tex]

The distance between the two points is apprximately 4.2

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE