Respuesta :
Answer:
[tex]\displaystyle y' = 2x + 3\sqrt{x} + 1[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Terms/Coefficients
- Anything to the 0th power is 1
- Exponential Rule [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
- Exponential Rule [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]
Calculus
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = (x + \sqrt{x})^2[/tex]
Step 2: Differentiate
- Chain Rule: [tex]\displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}][/tex]
- Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}][/tex]
- Simplify: [tex]\displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}][/tex]
- Basic Power Rule: [tex]\displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})[/tex]
- Simplify: [tex]\displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})[/tex]
- Rewrite [Exponential Rule - Rewrite]: [tex]\displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})[/tex]
- Multiply: [tex]\displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}][/tex]
- [Brackets] Add: [tex]\displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})[/tex]
- Multiply: [tex]\displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1[/tex]
- Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle y' = 2x + 3\sqrt{x} + 1[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e