Suppose Y(t) = 25e^3t + 12 represents the number of bacteria present at time t minutes. At what time will the population reach 100 bacteria? ( Note: Answers are expressed in terms of natural logarithm

Respuesta :

Given:

The given function is:

[tex]Y(t)=25e^{3t}+12[/tex]

Where Y represents the number of bacteria present at time t minutes.  

To find:

The time taken by bacteria population to reach 100 bacteria.

Solution:

We have,

[tex]Y(t)=25e^{3t}+12[/tex]

Putting [tex]Y(t)=100[/tex], we get

[tex]100=25e^{3t}+12[/tex]

[tex]100-12=25e^{3t}[/tex]

[tex]88=25e^{3t}[/tex]

Divide both sides by 25.

[tex]\dfrac{88}{25}=e^{3t}[/tex]

Taking ln on both sides, we get

[tex]\ln (\dfrac{88}{25})=\ln e^{3t}[/tex]

[tex]\ln(\dfrac{88}{25})=3t[/tex]                  [tex][\because \ln e^x=x][/tex]

Divide both sides by 3.

[tex]\dfrac{1}{3}\ln(\dfrac{88}{25})=t[/tex]

Therefore, the required time is [tex]\dfrac{1}{3}\ln(\dfrac{88}{25})[/tex] minutes.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE