Answer:
Step-by-step explanation:
Given :-
To Find :-
We can find the slope of the line passing through the points [tex]( x_1,y_1)[/tex] and [tex]( x_2,y_2)[/tex]as ,
[tex]\implies m = \dfrac{ y_2-y_1}{x_2-x_{1}}[/tex]
[tex]\implies m = \dfrac{ 42-15}{18-7} \\\\\implies \boxed{ m = \dfrac{ 27}{11 }}[/tex]
Hence the slope of the line is 27/11 .
[tex]\rule{200}2[/tex]
Finding the length of AB :-
[tex]\implies Distance =\sqrt{ (x_2-x_1)^2+(y_2-y_1)^2} \\\\\implies Distance =\sqrt{ (18-7)^2+(42-15)^2 } \\\\\implies Distance =\sqrt{ 11^2 + 27^2 } \\\\\implies Distance =\sqrt{ 121 + 729 } \\\\\implies Distance = \sqrt{ 850} \\\\\implies \boxed{ Distance = 29.15 \ units }[/tex]
Hence the length of AB is 29.15 units .