Whenever w is an integer greater than 1, logw w^2/w^6=?
-4
-3
-1/3
1/3
3

Answer:
Option (1)
Step-by-step explanation:
Given expression is,
[tex]\text{log_w(\frac{w^2}{w^6})}[/tex][tex]\text{log}_w(\frac{w^2}{w^6} )[/tex]
Let the given expression is equal to y.
[tex]\text{log}_w(\frac{w^2}{w^6} )=y[/tex]
By applying logarithmic rule,
[tex](\frac{w^2}{w^6} )=w^y[/tex]
[tex]w^2\times w^{-6}=w^y[/tex]
[tex]w^{2-6}=w^y[/tex]
[tex]w^{-4}=w^y[/tex]
[tex]y=-4[/tex]
Therefore, value of the given expression [tex]\text{log}_w(\frac{w^2}{w^6} )=-4[/tex].
Option (1) will be the correct option.