What is the product?

StartFraction x squared minus 16 Over 2 x + 8 EndFraction times StartFraction x cubed minus 2 x squared + x Over x squared + 3 x minus 4 EndFraction
StartFraction x (x minus 4) (x minus 1) Over 2 (x + 4) EndFraction
StartFraction x (x minus 1) Over 2 EndFraction
StartFraction (x + 4) (x minus 4) Over 2 x (x minus 1) EndFraction
StartFraction (x minus 4) (x minus 1) Over 2 x (x + 4) EndFraction

Respuesta :

Answer:

A

Step-by-step explanation:

The product of  the expression [tex]\frac{x^2 - 16}{2x + 8} * \frac{x^3 - 2x^2 + x}{x^2 + 3x - 4}[/tex]  is [tex]\frac{x(x- 1)(x - 4)}{x(x + 4)}[/tex]

What is an expression?

An expression is an algebraic term used for a mathematical statement that include variables and mathematical operations

Below is how to calculate the product

The product expression is given as:

[tex]\frac{x^2 - 16}{2x + 8} * \frac{x^3 - 2x^2 + x}{x^2 + 3x - 4}[/tex]

Express x^2 - 16 as a difference of two squares

[tex]\frac{(x - 4)(x + 4)}{2x + 8} * \frac{x^3 - 2x^2 + x}{x^2 + 3x - 4}[/tex]

Divide the expression

[tex]\frac{x - 4}{2} * \frac{x^3 - 2x^2 + x}{x^2 + 3x - 4}[/tex]

Factorize the other fraction

[tex]\frac{x - 4}{2} * \frac{x(x^2 - 2x + 1)}{(x -1)(x + 4)}[/tex]

Further factorize

[tex]\frac{x - 4}{2} * \frac{x(x- 1)(x - 1)}{(x -1)(x + 4)}[/tex]

Divide

[tex]\frac{x - 4}{2} * \frac{x(x- 1)}{x + 4}[/tex]

Multiply the fractions

[tex]\frac{x(x- 1)(x - 4)}{x(x + 4)}[/tex]

Hence, the product of  [tex]\frac{x^2 - 16}{2x + 8} * \frac{x^3 - 2x^2 + x}{x^2 + 3x - 4}[/tex]  is [tex]\frac{x(x- 1)(x - 4)}{x(x + 4)}[/tex]

Read more about algebraic expressions at:

https://brainly.com/question/4344214

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE