Respuesta :

Answer:

L = 10.64°

Step-by-step explanation:

From the given information:

In triangle JKL;

line k = 9.6 cm

line l = 2.7 cm; &

angle J = 43°

we are to find angle L = ???

We can use the sine rule to determine angle L:

i.e

[tex]\dfrac{j}{SIn \ J} = \dfrac{l}{ SIn \ L}[/tex]

Using Pythagoras rule to find j

i,e

j² = k² + l²

j² = 9.6²+ 2.7²

j² = 92.16 + 7.29

j² = 99.45

[tex]j = \sqrt{99.45}[/tex]

j = 9.97

[tex]\dfrac{9.97}{Sin \ 43} = \dfrac{2.7}{ Sin \ L}[/tex]

[tex]{9.97 \times Sin (L ) = (2.7 \times Sin \ 43)[/tex]

[tex]= Sin \ L = \dfrac{ (2.7 \times Sin \ 43)}{9.97 } \\ \\ = Sin \ L = \dfrac{ (2.7 \times 0.6819)}{9.97 } \\ \\ = Sin \ L = 0.18466 \\ \\ L = Sin^{-1} (0.18466) \\ \\ L = 10.64 ^0[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE