Answer:
0.078
Explanation:
The equation is :
[tex]$2SO_3 (g) \ \ \ \Leftrightarrow \ \ \ 2 SO_2(g) \ \ \ + \ \ \ O_2(g)$[/tex]
Initial 0.948 ----- ----
Change -2x +2x +x
Final 0.369 2x x
So the total pressure must reman same = 0.948
And the total pressure = partial pressure of all gases
0.948 = ( 0.369 + 2x + x )
0.948 = 0.369 + 3x
[tex]$x=\frac{0.579}{3}$[/tex]
= 0.193 atm
So the partial pressure of [tex]$SO_2$[/tex] = 0.193 x 2
= 0.386 atm
Partial pressure of [tex]$O_2$[/tex] = 0.193 atm
Therefore,
[tex]$k_p=\frac{(P_{SO_2})^2(P_{O_2})^}{(P_{SO_3})^2}$[/tex]
[tex]$=\frac{(0.386)^2(0.193)}{0.369}$[/tex]
= 0.078