Choose region 2 from the Explore & Test page that is bounded by the curves y = (x − 3)2 when x ≥ 3, x = 0, y = 4. Set the axis of revolution to be the y-axis and use the first slider to rotate the region around the y-axis. The solid generated resembles a coffee cup without a handle. Move the second slider to see how the volume of the disks can be used to approximate the volume of the coffee cup.

Respuesta :

Answer:

V= 76 π cubic units

Step-by-step explanation:

y= [tex](x-3)^{2}[/tex] -----> [tex]x=\sqrt{y} +3[/tex]

Here we will apply the risk method.

Risk method: consider a strip of length x and width dy as

a) Radius= R(y) = x = [tex]\sqrt{y} + 3[/tex]

[We rotate this disc about y-axis to get a disk]

b) Cross-section area = A(y)= π [tex](radius)^{2}[/tex]

                                    = A(y)= π (y+9+6 [tex]\sqrt{y}[/tex])

--------> Volume of the disc = A(y) x dy

c) Required volume= v = [tex]\int\limits^4_0[/tex] A(y) x d(y)

                         V= [tex]\int\limits^4_0[/tex]  π (y + 9 + 6[tex]\sqrt{y}[/tex] ) dy

                                                           

                         V=  π [ [tex]{\frac{y^{2} }{2} + 9y + 4y^{\frac{3}{2} }[/tex][tex]]_{0} ^{4}[/tex]

                          V= 76  π cubic units.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE