Approximate the definite integral using the Trapezoidal Rule and Simpson's Rule. Compare these results with the approximation of the integral using a graphing utility. (Round your answers to four decimal places.)
7∫1ln(x) dx, n = 4

Respuesta :

Answer:

[tex]\int^7_1 \in f(x) dx =7.6214[/tex]

Step-by-step explanation:

From the question we are told that:

Definite integral [tex]\int^7_1 ln(x) dx, n = 4[/tex]

Generally the equation for Trapezoidal Rule is mathematically given by

 [tex]\int^b_a f(x) dx = \frac{\triangle x}{2}(f(x_0)+2f(x_1)+2f(x_2)+... 2f(x_{n-1}+f(x_n))[/tex]

Where

 [tex]h =\triangle x[/tex]

 [tex]h=\frac{b-a}{n}[/tex]

 [tex]h=\frac{7-1}{4}[/tex]

 [tex]h=1.5[/tex]

Therefore

For [tex]n =4\ \ i.e\ x_0 -x_4[/tex]

The Endpoints are

 [tex]a=1[/tex]

 [tex]a'=a+h=>1+1.5=>2.5[/tex]

 [tex]a''=a'+h=>2.5+1.5=>4[/tex]

 [tex]a'''=a''+h=>4+1.5=>5.5[/tex]

 [tex]b=7[/tex]

Evaluating trapezoidal function at endpoints

 [tex]f(x_0)=f(a)=f(1)=\in(0)=0[/tex]

 [tex]2f(x_1)=2f(2.5)=2\in(2.5)=1.833[/tex]

 [tex]2f(x_2)=2f(4)=2\in(4)=2.77[/tex]

 [tex]2f(x_3)=2f(5.5)=2\in(5.5)=3.41[/tex]

 [tex]f(x_0=f(7=\n(7)=1.945[/tex]

Therefore approximation of the integral

 [tex]\int^b_a f(x) dx = \frac{\triangle x}{2}(f(x_0)+2f(x_1)+2f(x_2)+... 2f(x_{n-1}+f(x_n))[/tex]

 [tex]\int^b_a f(x) dx = \frac{3/2}{2}(f(0)+1.833+2.77+3.41+1.945)[/tex]

 [tex]\int^b_a f(x) dx =7.4704[/tex]

b)

Generally the equation for Simpson,s Rule is mathematically given by

 [tex]\int^b_a f(x) dx =\frac{\triangle x}{3}(f(x_0)+4f(x_1)+2f(x_2)}+4f(x_3))+....2f(x_{n-2})+4f(x_{n-1})+f(x_n))[/tex]

Where

 [tex]h \triangle x[/tex]

 [tex]h=\frac{b-a}{n}[/tex]

 [tex]h=\frac{7-1}{4}[/tex]

 [tex]h=1.5[/tex]

Therefore

For [tex]n =4 i.e x_0 -x_4[/tex]

The Endpoints are

 [tex]a=1[/tex]

 [tex]a'=a+h=>1+1.5=>2.5[/tex]

 [tex]a''=a'+h=>2.5+1.5=>4[/tex]

 [tex]a'''=a''+h=>4+1.5=>5.5[/tex]

 [tex]b=7[/tex]

Evaluating trapezoidal function at endpoints

 [tex]f(x_0)=f(a)=f(1)= \in(0)=0[/tex]

 [tex]4f(x_1)=4f(2.5)=4 \In (2.5)=3.66516[/tex]

 [tex]2f(x_2)=2f(4)=2\in(4)=2.77[/tex]

 [tex]4f(x_3)=4f(5.5)=4\in(5.5)=6.8189[/tex]

 [tex]f(x_4)=f(b)=f(7)=in(7)=1.9456[/tex]

Therefore

 [tex]\int^b_a f(x) dx =\frac{\triangle x}{3}(f(x_0)+4f(x_1)+2f(x_2)}+4f(x_3))+....2f(x_{n-2})+4f(x_{n-1})+f(x_n))[/tex]

 [tex]\int^b_a f(x) dx =\frac{1}{2}(0+3.66516+2.77+6.8189+1.9459)[/tex]

 [tex]\int^b_a f(x) dx =7.6013[/tex]

Therefore shown graphing utility

 [tex]\int^7_1 \in f(x) dx = x\inx-x+c[/tex]

 [tex]\int^7_1 \in f(x) dx =7\in(7)-6[/tex]

 [tex]\int^7_1 \in f(x) dx =7.6214[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE