Imagine you wish to determine whether the mean number of hours worked per week by men in a sample differs from the 40-hour standard. Use the information below to calculate the value of the single-sample t statistic.

Range = 60
Min Value = 5
Max value = 65
Mean = 42.31
Variance =100.00
Standard deviation = 10.00
Sum = 1,227

Respuesta :

Answer:

[tex]t = 7.359[/tex]

Step-by-step explanation:

Given

[tex]Range = 60[/tex]

[tex]Min = 5[/tex]

[tex]Max = 65[/tex]

[tex]\bar x = 42.31[/tex]

[tex]\sigma^2 =100.00[/tex]

[tex]\sigma = 10.00[/tex]

[tex]\sum = 1227[/tex]

[tex]n=40[/tex]

Required

The t statistic

This is calculated using:

[tex]t = \frac{\bar x - \mu}{\sigma/\sqrt n}[/tex]

Where

[tex]\mu \to[/tex] Population mean

[tex]\mu = \frac{\sum }{n}[/tex]

[tex]\sum = 1227[/tex] and [tex]n=40[/tex]

[tex]\mu = \frac{1227}{40}[/tex]

[tex]\mu = 30.675[/tex]

So, we have:

[tex]t = \frac{\bar x - \mu}{\sigma/\sqrt n}[/tex]

[tex]t = \frac{42.31 - 30.675}{10/\sqrt{40}}[/tex]

[tex]t = \frac{42.31 - 30.675}{10/6.325}[/tex]

[tex]t = \frac{11.635}{1.581}[/tex]

[tex]t = 7.359[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE