Respuesta :

Answer:

∫ F dr= 1

c

Step-by-step explanation:

The correct question is -

Given - [tex]F = < \frac{sec^{2} x}{y} , - \frac{tan x}{y^{2} }>[/tex] and C : (0, 1) to [tex](\frac{\pi }{4} , 1)[/tex]

To find - Evaluate and input the result of the following integral.

Proof -

We know that,

dr = dx i + dy j

F = < F1, F2 >

Now, we know

[tex]d(\frac{tanx}{y }) = \frac{d}{dx}(\frac{tanx}{y}) + \frac{d}{dy}(\frac{tanx}{y})[/tex]

So,

[tex]\frac{d}{dx}(\frac{tanx}{y}) =\frac{1}{y} \frac{d}{dx}({tanx}) \\\\ = \frac{sec^{2} x}{y} \\\frac{d}{dy}(\frac{tanx}{y}) = tanx \frac{d}{dy}(y^{-1}) \\ = -\frac{tanx}{y^{2} }[/tex]

Now,

We can see that,

[tex]d(\frac{tanx}{y }) = \frac{sec^{2} x}{y} dx - (\frac{tanx}{y^{2} })dy[/tex]

So,

[tex]\int\limits^{}_C {F. dr} = \int\limits^{}_C d(\frac{tanx}{y} )\\= [\frac{tanx}{y} ]\limits^{(\frac{\pi }{4} ,1)}_{(0,1)}\\= [\frac{tanx}{y} ]\limits^{}_{(\frac{\pi }{4} ,1)} - [\frac{tanx}{y} ]\limits^{}_{(0,1)}\\= \frac{tan(\frac{\pi }{4} )}{1} - \frac{tan 0}{1}\\= 1 - 0\\= 1[/tex]

∴ we get

∫ F dr= 1

c

Ver imagen Omm2
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE