Answer:
[tex]y = 415.113 -6.593 x_1 -4.504 x_2[/tex]
Step-by-step explanation:
Given
[tex]x_1: 16.7\ 17.4\ 18.4\ 16.8\ 18.9\ 17.1\ 17.3\ 18.2\ 21.3\ 21.2\ 20.7\ 18.5[/tex]
[tex]x_2: 30\ 42\ 47\ 47\ 43\ 41\ 48\ 44\ 43\ 50\ 56\ 60[/tex]
[tex]y: 210\ 110\ 103\ 103\ 91\ 76\ 73\ 70\ 68\ 53\ 45\ 31[/tex]
Required
Use R code to determine the regression equation
[tex]y = b_o + b_1x_1 + b_2x_2[/tex]
First, write the following code in a R program
[tex]x1 <- c(16.7,17.4,18.4,16.8,18.9,17.1,17.3,18.2,21.3,21.2,20.7,18.5)[/tex]
[tex]x2 <- c(30,42,47,47,43,41,48,44,43,50,56,60)[/tex]
[tex]y <- c(210,110,103,103,91,76,73,70,68,53,45,31)[/tex]
[tex]mod <- lm(y[/tex]~[tex]x1+x2)\\[/tex]
[tex]summary(mod)[/tex]
Next, run the program
See attachment for program and output
From the output, go to coefficients:
Check Estimate Std. column, you have the following:
[tex](Intercept) = 415.113[/tex]
[tex]x_1 = -6.593[/tex]
[tex]x_2 = -4.504[/tex]
[tex]y = b_o + b_1x_1 + b_2x_2[/tex] implies that:
[tex]b_o \to[/tex] Intercept
[tex]b_1 \to x_1[/tex]
[tex]b_2 \to x_2[/tex]
Hence, the least square regression equation is:
[tex]y = 415.113 -6.593 x_1 -4.504 x_2[/tex]