Respuesta :

Answer:

[tex](c)\ \tan B = \sin A[/tex]

Step-by-step explanation:

Given

[tex]\angle A + \angle B = 90[/tex] --- Complement angles

See attachment for complete question

Required

Which is not always true

To do this, we simply test each option

[tex](a)\ \sin A = \cos B[/tex]

The above is always true, if A and B are complements.

Examples are:

[tex]\sin(40) = \cos(50)[/tex]

[tex]\sin(90) = \cos(0)[/tex]

etc

[tex](b)\ \sec A = \csc B[/tex]

The above is always true, if A and B are complements.

The expression can be further simplified as:

[tex]\frac{1}{\cos A} = \frac{1}{\sin B}[/tex]

Cross Multiply

[tex]\sin B = \cos A[/tex]

This is literally the same as (a)

[tex](c)\ \tan B = \sin A[/tex]

The above is not always true, if A and B are complements.

The expression can be further simplified as:

[tex]\frac{\sin B}{\cos B} = \sin A[/tex]

Cross multiply

[tex]\sin B = \sin A * \cos B[/tex]

If A and B are complements. then

[tex]\sin A = \cos B[/tex]

So, we have:

[tex]\sin B = \sin A * \sin A[/tex]

[tex]\sin B = \sin^2 A[/tex]

The above expression is not true, for values of A and B

[tex](d) \cot B = \tan A[/tex]

The above is always true, if A and B are complements.

An example is:

[tex]\cot (55) = \tan (25) = 0.7002[/tex]

etc.

Ver imagen MrRoyal
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE