Three objects, carrying charges of 4.0 x 10^6 C, 6.0 x 10^6 C, and +9.0 x 10^6 C, respectively, are placed in a line, equally spaced from left to right by a distance of 0.50m. Calculate the magnitude and direction of the net force acting on each charge that results from the presence of the other two

Respuesta :

Answer:

[tex]F_1=540*10^{-12} N[/tex]

[tex]F_2=-1080 * 10^{-12} N[/tex]

[tex]F_3=-2268 * 10^{-12} N[/tex]

Explanation:

From the question we are told that

Charge on objects

[tex]Q_1=4.0 * 10^6 C[/tex]

[tex]Q_2= 6.0 * 10^6 C[/tex]

[tex]Q_3= +9.0 * 10^6 C[/tex]

Distance apart [tex]d=0.50m[/tex]

Generally the equation for Force on individual Charge is mathematically given by

For Q_1

[tex]F_1=\frac{d*Q_1Q_2}{r^2}+\frac{ d*Q_1Q_3}{4r^2}[/tex]

[tex]F_1=\frac{k*(4.0 * 10^6 C)(6.0 * 10^6 C)}{0.5^2}+\frac{ d*(4.0 * 10^6 C)( +9.0 * 10^6 C)}{4(0.5)^2}[/tex]

[tex]F_1=540*10^{-12}[/tex]

For Q_2

[tex]F_2= \frac{k}{0.5^2[Q_1 + Q_3]Q_2}[/tex]

[tex]F_2= \frac{k}{0.5^2[4.0 * 10^6 C + 9.0 * 10^6 ]*6.0 * 10^6 C}[/tex]

[tex]F_2=-1080 * 10^{-12} N[/tex]

For Q_3

[tex]F_3=\frac{kQ_3}{r^2[Q_1/4+Q_2}[/tex]

[tex]F_3=\frac{k(+9.0 x 10^6 C)}{(0.5)^2[(4.0 x 10^6 )/4+(6.0 x 10^6 C)}[/tex]

[tex]F_3=-2268 * 10^{-12} N[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE