Respuesta :

Answer:

[tex]\frac{y^2}{36}-\frac{x^2}{196}=1[/tex]

Step-by-step explanation:

From the question we are told that:

Vertices of hyperbola at [tex](0,\pm6)[/tex]

Asymptotes at [tex]Y= \pm 3/7x[/tex]

Generally the expression for Vertices of hyperbola is mathematically given by

 [tex](0,\pm a)[/tex]

Therefore

 [tex](0,\pm a)=(0,\pm6)[/tex]

Comparing variables

 [tex]a=6[/tex]

Generally the expression for Asymptotes of hyperbola is mathematically given by

 [tex]y=\pm \frac{a}{b}x[/tex]

Therefore

 [tex]\pm \frac{a}{b}x= \pm \frac{3}{7}x[/tex]

Therefore

 [tex]\frac{6}{b}= \frac{3}{7}[/tex]

 [tex]b=\frac{42}{3}[/tex]

 [tex]b=14[/tex]

Generally the equation for Hyperbola of hyperbola is mathematically given by

 [tex]\frac{y^2}{a^2}-\frac{x^2}{b^2}=1[/tex]

 [tex]\frac{y^2}{6^2}-\frac{x^2}{14^2}=1[/tex]

 [tex]\frac{y^2}{36}-\frac{x^2}{196}=1[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE