Respuesta :
Answer:
Point A(9, 3)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Coordinates (x, y)
- Functions
- Function Notation
- Terms/Coefficients
- Anything to the 0th power is 1
- Exponential Rule [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
- Exponential Rule [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = \sqrt{x}[/tex]
[tex]\displaystyle y' = \frac{1}{6}[/tex]
Step 2: Differentiate
- [Function] Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle y = x^{\frac{1}{2}}[/tex]
- Basic Power Rule: [tex]\displaystyle y' = \frac{1}{2}x^{\frac{1}{2} - 1}[/tex]
- Simplify: [tex]\displaystyle y' = \frac{1}{2}x^{-\frac{1}{2}}[/tex]
- [Derivative] Rewrite [Exponential Rule - Rewrite]: [tex]\displaystyle y' = \frac{1}{2x^{\frac{1}{2}}}[/tex]
- [Derivative] Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle y' = \frac{1}{2\sqrt{x}}[/tex]
Step 3: Solve
Find coordinates of A.
x-coordinate
- Substitute in y' [Derivative]: [tex]\displaystyle \frac{1}{6} = \frac{1}{2\sqrt{x}}[/tex]
- [Multiplication Property of Equality] Multiply 2 on both sides: [tex]\displaystyle \frac{1}{3} = \frac{1}{\sqrt{x}}[/tex]
- [Multiplication Property of Equality] Cross-multiply: [tex]\displaystyle \sqrt{x} = 3[/tex]
- [Equality Property] Square both sides: [tex]\displaystyle x = 9[/tex]
y-coordinate
- Substitute in x [Function]: [tex]\displaystyle y = \sqrt{9}[/tex]
- [√Radical] Evaluate: [tex]\displaystyle y = 3[/tex]
∴ Coordinates of A is (9, 3).
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e