If the gradient of the tangent to
[tex]y = \sqrt{x} [/tex]
is
[tex] \frac{1}{6} [/tex]
at point A, find the coordinates of A.​

Respuesta :

Space

Answer:

Point A(9, 3)

General Formulas and Concepts:

Pre-Algebra  

Order of Operations: BPEMDAS  

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties  

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I  

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
  • Exponential Rule [Root Rewrite]:                                                                     [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]  

Calculus  

Derivatives  

Derivative Notation  

Derivative of a constant is 0  

Basic Power Rule:  

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = \sqrt{x}[/tex]

[tex]\displaystyle y' = \frac{1}{6}[/tex]

Step 2: Differentiate

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   [tex]\displaystyle y = x^{\frac{1}{2}}[/tex]
  2. Basic Power Rule:                                                                                             [tex]\displaystyle y' = \frac{1}{2}x^{\frac{1}{2} - 1}[/tex]
  3. Simplify:                                                                                                             [tex]\displaystyle y' = \frac{1}{2}x^{-\frac{1}{2}}[/tex]
  4. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          [tex]\displaystyle y' = \frac{1}{2x^{\frac{1}{2}}}[/tex]
  5. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 [tex]\displaystyle y' = \frac{1}{2\sqrt{x}}[/tex]

Step 3: Solve

Find coordinates of A.

x-coordinate

  1. Substitute in y' [Derivative]:                                                                             [tex]\displaystyle \frac{1}{6} = \frac{1}{2\sqrt{x}}[/tex]
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      [tex]\displaystyle \frac{1}{3} = \frac{1}{\sqrt{x}}[/tex]
  3. [Multiplication Property of Equality] Cross-multiply:                                      [tex]\displaystyle \sqrt{x} = 3[/tex]
  4. [Equality Property] Square both sides:                                                           [tex]\displaystyle x = 9[/tex]

y-coordinate

  1. Substitute in x [Function]:                                                                                [tex]\displaystyle y = \sqrt{9}[/tex]
  2. [√Radical] Evaluate:                                                                                         [tex]\displaystyle y = 3[/tex]

∴ Coordinates of A is (9, 3).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE