Give the exact value of the trigonometric function.

csc225°
A. [tex]\sqrt{2}[/tex]
B. [tex]\frac{\sqrt{2} }{2}[/tex]
C. [tex]-\sqrt{2}[/tex]
D. [tex]\frac{-\sqrt{2} }{2}[/tex]

Please explain your answer, I will give brainliest, thank you!

Respuesta :

Nayefx

Answer:

[tex] \displaystyle \text C)\csc( {225}^{ \circ } )= - \sqrt{2} [/tex]

Step-by-step explanation:

we want to figure out the exact value of the following:

[tex] \displaystyle \csc( {225}^{ \circ} ) [/tex]

recall that,

[tex] \displaystyle \csc( \theta ) = \frac{1}{ \sin( \theta)} [/tex]

we are given [tex]\theta=225°[/tex]

substitute:

[tex] \displaystyle \csc( {225}^{ \circ } )= \frac{1}{ \sin( {225}^{ \circ} )} [/tex]

225° belongs to Q:III which we can clearly acquire from unit circle so,

[tex] \displaystyle \csc( {225}^{ \circ } )= \frac{1}{ \dfrac{ - \sqrt{2} }{2} } [/tex]

By simplifying complex fraction we get:

[tex] \displaystyle \csc( {225}^{ \circ } )= \frac{2}{ - \sqrt{ 2} } [/tex]

notice that, what we acquired isn't in the option so multiply it by √2/√2

[tex] \displaystyle \csc( {225}^{ \circ } )= \frac{2}{ - \sqrt{ 2} } \times \frac{ \sqrt{2} }{ \sqrt{2} } [/tex]

simplify multiplication:

[tex] \displaystyle \csc( {225}^{ \circ } )= \frac{2 \sqrt{2} }{ - \sqrt{ 4} } [/tex]

simplify square:

[tex] \displaystyle \csc( {225}^{ \circ } )= \frac{2 \sqrt{2} }{ - 2} [/tex]

reduce fraction:

[tex] \displaystyle \csc( {225}^{ \circ } )= - \sqrt{2} [/tex]

hence,

our answer is C

Ver imagen Nayefx
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE