Respuesta :

Answer:

[tex]n^2 + \frac{2n}{3} + \frac{1}{9} = \frac{1}{9}[/tex] -- Perfect square trinomial

[tex](n + \frac{1}{3})^2 = \frac{1}{9}[/tex] ---Binomial squared

Step-by-step explanation:

Given

[tex]n^2 + \frac{2n}{3}[/tex]

Solving (a): Perfect square trinomial

We have:

[tex]n^2 + \frac{2n}{3}[/tex]

Express as an equation

[tex]n^2 + \frac{2n}{3} =[/tex]

Start----------------------------

Take coefficient of n i.e. (2/3)

Half it: i.e. (1/3)

Square it: (1/63^2

Add to both sides of the equation

---------------------------End

So, we have:

[tex]n^2 + \frac{2n}{3} + (\frac{1}{3})^2 = (\frac{1}{3})^2[/tex]

Remove brackets

[tex]n^2 + \frac{2n}{3} + \frac{1}{9} = \frac{1}{9}[/tex]

Solving (b): Binomial Squared

[tex]n^2 + \frac{2n}{3} + \frac{1}{9} = \frac{1}{9}[/tex]

Expand

[tex]n^2 + \frac{n}{3}+ \frac{n}{3} + \frac{1}{9} = \frac{1}{9}[/tex]

Factorize:

[tex]n(n + \frac{1}{3})+ \frac{1}{3}(n + \frac{1}{3}) = \frac{1}{9}[/tex]

Factor out n + 1/3

[tex](n + \frac{1}{3})(n + \frac{1}{3}) = \frac{1}{9}[/tex]

Express as square

[tex](n + \frac{1}{3})^2 = \frac{1}{9}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE