What is the area of AABC?
B
2
X2
O
2
A
6
O A 26
B 13
OC 226
D
26

Answer:
[tex]Area = 13[/tex]
Step-by-step explanation:
Given
[tex]A = (4,0)[/tex] -- [tex]x1,y1[/tex]
[tex]B =(5,5)[/tex] -- [tex]x2,y2[/tex]
[tex]C =(0,6)[/tex] -- [tex]x3,y3[/tex]
Required
Area of ABC
This is calculated as:
[tex]Area = \frac{1}{2}|x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + x_3y_1 - x_1y_3|[/tex]
This gives:
[tex]Area = \frac{1}{2}|4 * 5 - 5 *0 +5*6 - 0*5 + 0*0 - 4*6|[/tex]
Using a calculator, we have:
[tex]Area = \frac{1}{2}|26|[/tex]
Remove absolute bracket
[tex]Area = \frac{1}{2}*26[/tex]
[tex]Area = 13[/tex]