Respuesta :

Answer:

[tex]NP = 24.18[/tex]

Step-by-step explanation:

Given

[tex]NK = 7x - 1[/tex]

[tex]NM = 10x - 13[/tex]

[tex]KM = 24[/tex]

See attachment

Required

Length of NP

First, calculate the value of x

[tex]NK = NM[/tex]

So:

[tex]7x -1 = 10x - 13[/tex]

Collect like terms

[tex]10x - 7x = 13 - 1[/tex]

[tex]3x =12[/tex]

Solve for x

[tex]x = 4[/tex]

To solve for NP, we consider right triangle [tex]\triangle NKP[/tex]

Where

[tex]NK = 7x - 1[/tex]

[tex]NK = 7 * 4 - 1[/tex]

[tex]NK = 27[/tex]

[tex]KP =\frac{1}{2}KM[/tex]

[tex]KP =\frac{1}{2} * 24[/tex]

[tex]KP =12\\[/tex]

Using Pythagoras theorem, we have:

[tex]NK^2 = KP^2 + NP^2[/tex]

[tex]27^2 = 12^2 + NP^2[/tex]

[tex]729 = 144 + NP^2[/tex]

Collect like terms

[tex]NP^2 = 729 - 144[/tex]

[tex]NP^2 = 585[/tex]

Take square roots

[tex]NP = \sqrt{585[/tex]

[tex]NP = 24.18[/tex]

Ver imagen MrRoyal
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE