Plato!! Please help!!!

Answer:
[tex]a =7[/tex] [tex]b = 2[/tex] [tex]c = -4[/tex]
Step-by-step explanation:
Given
[tex]\frac{3x}{x + 2} + \frac{4x}{x - 2} = \frac{ax^2 + bx}{x^2 + c}[/tex]
Required
Find a, b and c
[tex]\frac{3x}{x + 2} + \frac{4x}{x - 2} = \frac{ax^2 + bx}{x^2 + c}[/tex]
Take LCM
[tex]\frac{3x(x -2) + 4x(x+2)}{(x + 2)(x - 2)} = \frac{ax^2 + bx}{x^2 + c}[/tex]
Expand
[tex]\frac{3x^2 -6x + 4x^2+8x}{x^2 - 4} = \frac{ax^2 + bx}{x^2 + c}[/tex]
Collect like terms
[tex]\frac{3x^2 + 4x^2-6x+8x}{x^2 - 4} = \frac{ax^2 + bx}{x^2 + c}[/tex]
[tex]\frac{7x^2+2x}{x^2 - 4} = \frac{ax^2 + bx}{x^2 + c}[/tex]
By direct comparison:
[tex]ax^2= 7x^2 \to a = 7[/tex]
[tex]bx = 2x \to b = 2[/tex]
[tex]-4 = c \to c = -4[/tex]