Respuesta :

Answer:

[tex]a =7[/tex]   [tex]b = 2[/tex]  [tex]c = -4[/tex]

Step-by-step explanation:

Given

[tex]\frac{3x}{x + 2} + \frac{4x}{x - 2} = \frac{ax^2 + bx}{x^2 + c}[/tex]

Required

Find a, b and c

[tex]\frac{3x}{x + 2} + \frac{4x}{x - 2} = \frac{ax^2 + bx}{x^2 + c}[/tex]

Take LCM

[tex]\frac{3x(x -2) + 4x(x+2)}{(x + 2)(x - 2)} = \frac{ax^2 + bx}{x^2 + c}[/tex]

Expand

[tex]\frac{3x^2 -6x + 4x^2+8x}{x^2 - 4} = \frac{ax^2 + bx}{x^2 + c}[/tex]

Collect like terms

[tex]\frac{3x^2 + 4x^2-6x+8x}{x^2 - 4} = \frac{ax^2 + bx}{x^2 + c}[/tex]

[tex]\frac{7x^2+2x}{x^2 - 4} = \frac{ax^2 + bx}{x^2 + c}[/tex]

By direct comparison:

[tex]ax^2= 7x^2 \to a = 7[/tex]

[tex]bx = 2x \to b = 2[/tex]

[tex]-4 = c \to c = -4[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE