Respuesta :

Answer:

[tex]\sqrt[4]{768x^8y^5} = 4x^2y \sqrt[4]{3y}[/tex]

Step-by-step explanation:

Given

[tex]\sqrt[4]{768x^8y^5}[/tex]

Required

Simplify

We have:

[tex]\sqrt[4]{768x^8y^5}[/tex]

Expand 768

[tex]\sqrt[4]{768x^8y^5} = \sqrt[4]{256 * 3 * x^8y^5}[/tex]

Split

[tex]\sqrt[4]{768x^8y^5} = \sqrt[4]{256} * \sqrt[4]{3 * x^8y^5}[/tex]

[tex]\sqrt[4]{256} = 4[/tex]

So, we have:

[tex]\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3 * x^8y^5}[/tex]

Expand y^5

[tex]\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3 * x^8*y *y^4}[/tex]

Rewrite as:

[tex]\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3*y * x^8 *y^4}[/tex]

[tex]\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3y * x^8 *y^4}[/tex]

Split

[tex]\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3y} * \sqrt[4]{x^8 *y^4}[/tex]

Apply the following law of indices

[tex]\sqrt[a]{b} = b^\frac{1}{a}[/tex]

[tex]\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3y} * (x^8 *y^4)^\frac{1}{4}[/tex]

Expand

[tex]\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3y} * x^{8*\frac{1}{4}} *y^{4*\frac{1}{4}}[/tex]

[tex]\sqrt[4]{768x^8y^5} = 4* \sqrt[4]{3y} * x^2y[/tex]

Rewrite as:

[tex]\sqrt[4]{768x^8y^5} = 4* x^2y* \sqrt[4]{3y}[/tex]

[tex]\sqrt[4]{768x^8y^5} = 4x^2y \sqrt[4]{3y}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE