Respuesta :

Answer:

[tex]ML = 58[/tex]

Step-by-step explanation:

Given

[tex]JK=3x+11, ML=10x-12, NP=45[/tex]

See attachment

Required

Length ML

First, calculate x using the following equivalent ratios

[tex]JK : NP = NP : ML[/tex]

Express as fraction

[tex]\frac{JK }{ NP} = \frac{NP }{ ML}[/tex]

Cross Multiply

[tex]JK * ML = NP * NP[/tex]

Substitute values:

[tex](3x +11) * (10x - 12) = 45 * 45[/tex]

Expand

[tex]30x^2 - 36x + 110x - 132 = 2025[/tex]

[tex]30x^2 +74x - 132 = 2025[/tex]

Collect like terms

[tex]30x^2 +74x - 132 - 2025=0[/tex]

[tex]30x^2 +74x -2157=0[/tex]

Using a calculator:

[tex]x \approx -10[/tex] and [tex]x \approx 7[/tex]

Given that:

[tex]ML=10x-12[/tex]

Substitute values for x

[tex]ML=10*-10-12 = -100 - 12 = -112[/tex]

[tex]ML=10*7-12 = 70 - 12 = 58[/tex]

ML cannot be negative; So:

[tex]ML = 58[/tex]

Ver imagen MrRoyal
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE