Respuesta :

Answer:

GIVEN :-

  • ∠A = 15°
  • Length of AB (hypotenuse) = 60 ft

TO FIND :-

  • Length of BC
  • Length of AC
  • Area of ΔABC

FACTS TO KNOW BEFORE SOLVING :-

  • [tex]\sin \theta = \frac{Side \: opposite \: to \: \theta}{Hypotenuse}[/tex]
  • [tex]\cos \theta = \frac{Side \: adjacent \: to \: \theta}{Hypotenuse}[/tex]

SOLUTION :-

In ΔABC ,

  • [tex]\sin 15 = \frac{BC}{60}[/tex]

[tex]=> 0.2588... = \frac{BC}{60}[/tex]

[tex]=> BC = (0.2588....) \times 60 = 15.5291.....[/tex] ≈ 15.5 ft

  • [tex]\cos 15 = \frac{AC}{60}[/tex]

[tex]=> 0.9659..... = \frac{AC}{60}[/tex]

[tex]=> AC = (0.9659.....) \times 60 = 57.9555.....[/tex] ≈ 58 ft

Area of ΔABC = [tex]\frac{1}{2} \times 58 \times 15.5 = 449.5 \:ft^2[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE