gzz24
contestada

Plz help me thanks

Complete the square to make a perfect square trinomial. Then, write a result as a binomial squared. m^2-13m

m^2-13+ ? =( ? )^2

Respuesta :

Answer:

Trinomial

[tex]m^2 - 13m + \frac{169}{4}[/tex]

Binomial squared

[tex](m - \frac{13}{2})^2[/tex]

Step-by-step explanation:

Given

[tex]m^2-13m[/tex]

Required

Make a perfect trinomial

We have:

[tex]m^2-13m =[/tex]

-----------------------------------------------

Take the coefficient of m i.e. -13

Divide by 2 i.e. -13/2

Square i.e. (-13/2)

Add to both sides of the equation

-----------------------------------------------

[tex]m^2-13m =[/tex] becomes

[tex]m^2 - 13m + (\frac{-13}{2})^2 = (\frac{-13}{2})^2[/tex]

[tex]m^2 - 13m + \frac{169}{4} = \frac{169}{4}[/tex]

Expand

[tex]m^2 - \frac{13}{2}m- \frac{13}{2}m + \frac{169}{4} = \frac{169}{4}[/tex]

Factorize:

[tex]m(m - \frac{13}{2})- \frac{13}{2}(m - \frac{13}{2}) = \frac{169}{4}[/tex]

Factor out m - 13/2

[tex](m - \frac{13}{2})(m - \frac{13}{2}) = \frac{169}{4}[/tex]

Write as square

[tex](m - \frac{13}{2})^2 = \frac{169}{4}[/tex]

Hence, the trinomial is:

[tex]m^2 - 13m + \frac{169}{4}[/tex]

And the binomial squared is:

[tex](m - \frac{13}{2})^2[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE