Respuesta :

Answer:

[tex]g(h(10)) = 2\sqrt 2[/tex]

Step-by-step explanation:

Given

[tex]g(x) = \sqrt {x - 4[/tex]

[tex]h(x) = 2x - 8[/tex]

Required

[tex]g(h(10))[/tex]

First, calculate [tex]g(h(x))[/tex]

We have:

[tex]g(x) = \sqrt {x - 4[/tex]

This gives:

[tex]g(h(x)) = \sqrt {h(x) - 4[/tex]

Substitute [tex]h(x) = 2x - 8[/tex]

[tex]g(h(x)) = \sqrt {2x - 8 - 4[/tex]

[tex]g(h(x)) = \sqrt {2x - 12[/tex]

Substitute [tex]x = 10[/tex]

[tex]g(h(10)) = \sqrt {2*10 - 12[/tex]

[tex]g(h(10)) = \sqrt {20 - 12[/tex]

[tex]g(h(10)) = \sqrt {8\\[/tex]

Split

[tex]g(h(10)) = \sqrt {4} * \sqrt 2[/tex]

This gives

[tex]g(h(10)) = 2\sqrt 2[/tex]

Answer:

Step-by-step explanation:

Ver imagen trlg1420
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE