Respuesta :

Answer:

[tex]x =\sqrt 5[/tex]

[tex]y = \sqrt{5[/tex]

Step-by-step explanation:

Given

The attached triangle

Required

Solve for x

Considering angle 45 degrees, we have:

[tex]\cos(45) = \frac{y}{\sqrt{10}}[/tex] --- cosine formula i.e. adj/hyp

Solve for y

[tex]y = \sqrt{10} * \cos(45)[/tex]

In radical form, we have:

[tex]y = \sqrt{10} * \frac{1}{\sqrt 2}[/tex]

[tex]y = \sqrt{10/2}[/tex]

[tex]y = \sqrt{5[/tex]

To solve for x, we make use of Pythagoras theorem

[tex]x^2 + y^2 = (\sqrt{10})^2[/tex]

[tex]x^2 + y^2 =10[/tex]

Substitute for y

[tex]x^2 + (\sqrt 5)^2 =10[/tex]

[tex]x^2 + 5 =10[/tex]

Collect like terms

[tex]x^2 =10-5[/tex]

[tex]x^2= 5[/tex]

Solve for x

[tex]x =\sqrt 5[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE