Respuesta :

Nayefx

Answer:

[tex] \displaystyle \frac{dy}{dx} = \frac{2x + 2}{x^3} [/tex]

Step-by-step explanation:

we would like to figure out the derivative of the following:

[tex] \displaystyle \frac{ { 3x }^{2} - 2x - 1 }{ {x}^{2} } [/tex]

to do so, let,

[tex] \displaystyle y = \frac{ { 3x }^{2} - 2x - 1 }{ {x}^{2} } [/tex]

By simplifying we acquire:

[tex] \displaystyle y = 3 - \frac{2}{x} - \frac{1}{ {x}^{2} } [/tex]

use law of exponent which yields:

[tex] \displaystyle y = 3 - 2 {x}^{ - 1} - { {x}^{ - 2} } [/tex]

take derivative in both sides:

[tex] \displaystyle \frac{dy}{dx} = \frac{d}{dx} (3 - 2 {x}^{ - 1} - { {x}^{ - 2} } )[/tex]

use sum derivation rule which yields:

[tex] \rm\displaystyle \frac{dy}{dx} = \frac{d}{dx} 3 - \frac{d}{dx} 2 {x}^{ - 1} - \frac{d}{dx} {x}^{ - 2} [/tex]

By constant derivation we acquire:

[tex] \rm\displaystyle \frac{dy}{dx} = 0 - \frac{d}{dx} 2 {x}^{ - 1} - \frac{d}{dx} {x}^{ - 2} [/tex]

use exponent rule of derivation which yields:

[tex] \rm\displaystyle \frac{dy}{dx} = 0 - ( - 2 {x}^{ - 1 -1} ) - ( - 2 {x}^{ - 2 - 1} )[/tex]

simplify exponent:

[tex] \rm\displaystyle \frac{dy}{dx} = 0 - ( - 2 {x}^{ -2} ) - ( - 2 {x}^{ - 3} )[/tex]

two negatives make positive so,

[tex] \displaystyle \frac{dy}{dx} = 2 {x}^{ -2} + 2 {x}^{ - 3} [/tex]

further simplification if needed:

by law of exponent we acquire:

[tex] \displaystyle \frac{dy}{dx} = \frac{2 }{x^2}+ \frac{2}{x^3} [/tex]

simplify addition:

[tex] \displaystyle \frac{dy}{dx} = \frac{2x + 2}{x^3} [/tex]

and we are done!

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE