Respuesta :

Answer:

Step-by-step explanation:

1). By applying Pythagoras theorem in the triangle formed by two sides and the diagonal,

Length of the diagonal = [tex]\sqrt{(\text{side})^2+(\text{side})^2}[/tex]

                                      = [tex](\text{side})\sqrt{2}[/tex]

                                      = 25√2

                                AC ≈ 35.56 units

2). Since, diagonal of a square is the angle bisector of interior angles of the square,

m∠CAB = 45°

By applying sine rule in ΔABC,

sin(45°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{1}{\sqrt{2}}=\frac{AB}{AC}[/tex]

[tex]\frac{1}{\sqrt{2}}=\frac{25}{AC}[/tex]

AC = 25√2

AC ≈ 35.56 units

Ver imagen eudora
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE