Answer:
[tex]T_2=339K[/tex]
Explanation:
Hello there!
In this case, according to the Charles' gas law as way to understand the volume-temperature as a directly proportional relationship for this problem, we can write:
[tex]\frac{T_2}{V_2}=\frac{T_1}{V_1}[/tex]
Thus, given the initial temperature and volume and the final volume, we are able to calculate the final temperature as follows:
[tex]T_2=\frac{T_1V_2}{V_1} \\\\T_2=\frac{252K*5.25L}{3.90L}\\\\T_2=339K[/tex]
Best regards!